応用解析セミナー

過去の記録 ~09/14次回の予定今後の予定 09/15~

開催情報 木曜日 16:00~17:30 数理科学研究科棟(駒場) 002号室
担当者 石毛 和弘

2021年10月14日(木)

16:00-17:00   オンライン開催
立石 優二郎 氏 (東大数理)
逆二乗冪ポテンシャル項を持つ Schrödinger 熱半群に対する最適時間減衰評価 (Japanese)
[ 講演概要 ]
本講演では, 逆二乗冪ポテンシャル項を持つ楕円型作用素に対して, その熱半群及び導関数に対して作用素ノルムの時間減衰評価を考える. 楕円型作用素の正値調和関数の可積分性は熱半群の時間減衰率と密接な関係があり, 本研究では, 球面調和関数を利用した初期データのフーリエ級数展開によって, ポテンシャル項付き熱方程式の空間球対称解及び付随する正値調和関数の解析に帰着させる方法をとる. 結果として, 熱半群及びその導関数の Lorentz 空間上の作用素ノルムについて, 最適な時間減衰評価を導出した. 本講演は石毛和弘氏 (東京大学) との共同研究に基づく.
[ 参考URL ]
https://forms.gle/s4zMhkwpih3FrdhE7