代数学コロキウム
過去の記録 ~09/18|次回の予定|今後の予定 09/19~
開催情報 | 水曜日 17:00~18:00 数理科学研究科棟(駒場) 117号室 |
---|---|
担当者 | 今井 直毅,ケリー シェーン |
2021年07月07日(水)
17:00-18:00 オンライン開催
吉田 匠 氏 (慶應義塾大学)
On the BSD conjecture for the quadratic twists of the elliptic curve $X_0(49)$ (Japanese)
吉田 匠 氏 (慶應義塾大学)
On the BSD conjecture for the quadratic twists of the elliptic curve $X_0(49)$ (Japanese)
[ 講演概要 ]
The full BSD conjecture (the full Birch-Swinnerton-Dyer conjecture) is the important conjecture, which connects the algebraic invariants and analytic invariants of elliptic curves. When the elliptic curve is defined over $\mathbb{Q}$, these invariants are known to be rational numbers. Now, even when the elliptic curve is defined over $\mathbb{Q}$ and the $L$-function is not $0$ at $s=1$, it is not shown that the $2$-orders of these invariants are equal. Coates, Kim, Liang and Zhao proved the full BSD conjecture for some quadratic twists of $X_0(49)$, by proving that these $2$-orders are same. We extends this result, and prove the full BSD conjecture for more twists.
The full BSD conjecture (the full Birch-Swinnerton-Dyer conjecture) is the important conjecture, which connects the algebraic invariants and analytic invariants of elliptic curves. When the elliptic curve is defined over $\mathbb{Q}$, these invariants are known to be rational numbers. Now, even when the elliptic curve is defined over $\mathbb{Q}$ and the $L$-function is not $0$ at $s=1$, it is not shown that the $2$-orders of these invariants are equal. Coates, Kim, Liang and Zhao proved the full BSD conjecture for some quadratic twists of $X_0(49)$, by proving that these $2$-orders are same. We extends this result, and prove the full BSD conjecture for more twists.