代数学コロキウム

過去の記録 ~01/29次回の予定今後の予定 01/30~

開催情報 水曜日 17:00~18:00 数理科学研究科棟(駒場) 056号室
担当者 今井 直毅, 三枝 洋一

2021年05月26日(水)

17:00-18:00   オンライン開催
島田 了輔 氏 (東京大学大学院数理科学研究科)
Geometric Structure of Affine Deligne-Lusztig Varieties for $\mathrm{GL}_3$ (Japanese)
[ 講演概要 ]
The Langlands correspondence, which contains class field theory as a special case, is one of the most important topics in number theory. Shimura varieties have been used, with great success, towards applications in the realm of the Langlands program. In this context, geometric and homological properties of affine Deligne-Lusztig varieties have been used to examine Shimura varieties and the local Langlands correspondence.
In this talk we study the geometric structure of affine Deligne-Lusztig varieties $X_{\lambda}(b)$ for $\mathrm{GL}_3$ and $b$ basic.
We completely determine the irreducible components of the affine Deligne-Lusztig variety. In particular, we classify the cases where all of the irreducible components are classical Deligne-Lusztig varieties times finite-dimensional affine spaces. If this is the case, then the irreducible components are pairwise disjoint.