代数学コロキウム
過去の記録 ~04/30|次回の予定|今後の予定 05/01~
開催情報 | 水曜日 17:00~18:00 数理科学研究科棟(駒場) 117号室 |
---|---|
担当者 | 今井 直毅,ケリー シェーン |
2021年03月10日(水)
17:00-18:00 オンライン開催
板東 克之 氏 (東京大学数理科学研究科)
Geometric Satake equivalence in mixed characteristic and Springer correspondence (Japanese)
板東 克之 氏 (東京大学数理科学研究科)
Geometric Satake equivalence in mixed characteristic and Springer correspondence (Japanese)
[ 講演概要 ]
The geometric Satake correspondence is an equivalence between the category of equivariant perverse sheaves on the affine Grassmannian and the category of representations of the Langlands dual group. It is known that there is a mixed characteristic version of the geometric Satake correspondence. The Springer correspondence is a correspondence between the category of equivariant perverse sheaves on the nilpotent cone and the category of representation of the Weyl group. In this talk, we will explain some relation between these two correspondences, including the mixed characteristic case.
The geometric Satake correspondence is an equivalence between the category of equivariant perverse sheaves on the affine Grassmannian and the category of representations of the Langlands dual group. It is known that there is a mixed characteristic version of the geometric Satake correspondence. The Springer correspondence is a correspondence between the category of equivariant perverse sheaves on the nilpotent cone and the category of representation of the Weyl group. In this talk, we will explain some relation between these two correspondences, including the mixed characteristic case.