代数学コロキウム

過去の記録 ~04/16次回の予定今後の予定 04/17~

開催情報 水曜日 17:00~18:00 数理科学研究科棟(駒場) 117号室
担当者 今井 直毅,ケリー シェーン

2019年06月05日(水)

17:30-18:30   数理科学研究科棟(駒場) 056号室
服部新 氏 (東京都市大学)
Duality of Drinfeld modules and P-adic properties of Drinfeld modular forms (English)
[ 講演概要 ]
Let p be a rational prime, q>1 a p-power and P a non-constant irreducible polynomial in F_q[t]. The notion of Drinfeld modular form is an analogue over F_q(t) of that of elliptic modular form. Numerical computations suggest that Drinfeld modular forms enjoy some P-adic structures comparable to the elliptic analogue, while at present their P-adic properties are less well understood than the p-adic elliptic case. In 1990s, Taguchi established duality theories for Drinfeld modules and also for a certain class of finite flat group schemes called finite v-modules. Using the duality for the latter, we can define a function field analogue of the Hodge-Tate map. In this talk, I will explain how the Taguchi's theory and our Hodge-Tate map yield results on Drinfeld modular forms which are classical to elliptic modular forms e.g. P-adic congruences of Fourier coefficients imply p-adic congruences of weights.