代数学コロキウム
過去の記録 ~09/15|次回の予定|今後の予定 09/16~
開催情報 | 水曜日 17:00~18:00 数理科学研究科棟(駒場) 117号室 |
---|---|
担当者 | 今井 直毅,ケリー シェーン |
2018年12月12日(水)
18:00-19:00 数理科学研究科棟(駒場) 056号室
Gaëtan Chenevier 氏 (CNRS, Université Paris-Sud)
A higher weight (and automorphic) generalization of the Hermite-Minkowski theorem (ENGLISH)
Gaëtan Chenevier 氏 (CNRS, Université Paris-Sud)
A higher weight (and automorphic) generalization of the Hermite-Minkowski theorem (ENGLISH)
[ 講演概要 ]
I will show that for any integer N, there are only finitely many cuspidal algebraic automorphic representations of GL_m over Q whose Artin conductor is N and whose "weights" are in the interval {0,...,23} (with m varying). Via the conjectural yoga between geometric Galois representations (or motives) and algebraic automorphic forms, this statement may be viewed as a generalization of the classical Hermite-Minkowski theorem in algebraic number theory. I will also discuss variants of these results when the base field Q is replaced by an arbitrary number field.
(本講演は「東京北京パリ数論幾何セミナー」として,インターネットによる東大数理,Morningside Center of Mathematics と IHES の双方向同時中継で行います.今回はパリからの中継です.)
I will show that for any integer N, there are only finitely many cuspidal algebraic automorphic representations of GL_m over Q whose Artin conductor is N and whose "weights" are in the interval {0,...,23} (with m varying). Via the conjectural yoga between geometric Galois representations (or motives) and algebraic automorphic forms, this statement may be viewed as a generalization of the classical Hermite-Minkowski theorem in algebraic number theory. I will also discuss variants of these results when the base field Q is replaced by an arbitrary number field.
(本講演は「東京北京パリ数論幾何セミナー」として,インターネットによる東大数理,Morningside Center of Mathematics と IHES の双方向同時中継で行います.今回はパリからの中継です.)