代数幾何学セミナー
過去の記録 ~12/08|次回の予定|今後の予定 12/09~
開催情報 | 金曜日 13:30~15:00 数理科学研究科棟(駒場) ハイブリッド開催/117号室 |
---|---|
担当者 | 權業 善範、中村 勇哉、田中 公 |
2018年07月10日(火)
15:30-17:00 数理科学研究科棟(駒場) 002号室
いつもと部屋が違います。The room is different from usual.
賴青瑞 氏 (国立成功大学)
The effective bound of anticanonical volume of Fano threefolds (English)
いつもと部屋が違います。The room is different from usual.
賴青瑞 氏 (国立成功大学)
The effective bound of anticanonical volume of Fano threefolds (English)
[ 講演概要 ]
According to Mori's program, varieties covered by rational curves are
built up from anti-canonically polarized varieties, aka Fano varieties. After fixed the
dimension and singularity type, Fano varieties form a bounded family by Birkar's proof (2016)
of Borisov-Alexeev-Borisov conjecture, which In particular implies that the anticanonical
volume -K^\dim is bounded. In this talk, we focus on canonical Fano threefolds,
where boundedness was established by Koll\'ar-Miyaoka-Mori-Takagi (2000).
Our aim is to find an effective bound of the anticanonical volume -K^3, which is
not explicit either from the work of Koll\'ar-Miyaoka-Mori-Takagi or Birkar. We will discuss
some effectiveness results related to this problem and prove that -K_X^3\leq 72 if \rho(X)\leq 2.
This partially extends early work of Mori, Mukai, Y. Prokhorov, et al.
According to Mori's program, varieties covered by rational curves are
built up from anti-canonically polarized varieties, aka Fano varieties. After fixed the
dimension and singularity type, Fano varieties form a bounded family by Birkar's proof (2016)
of Borisov-Alexeev-Borisov conjecture, which In particular implies that the anticanonical
volume -K^\dim is bounded. In this talk, we focus on canonical Fano threefolds,
where boundedness was established by Koll\'ar-Miyaoka-Mori-Takagi (2000).
Our aim is to find an effective bound of the anticanonical volume -K^3, which is
not explicit either from the work of Koll\'ar-Miyaoka-Mori-Takagi or Birkar. We will discuss
some effectiveness results related to this problem and prove that -K_X^3\leq 72 if \rho(X)\leq 2.
This partially extends early work of Mori, Mukai, Y. Prokhorov, et al.