代数学コロキウム
過去の記録 ~09/14|次回の予定|今後の予定 09/15~
開催情報 | 水曜日 17:00~18:00 数理科学研究科棟(駒場) 117号室 |
---|---|
担当者 | 今井 直毅,ケリー シェーン |
2015年02月18日(水)
16:40-17:40 数理科学研究科棟(駒場) 056号室
Piotr Achinger 氏 (University of California, Berkeley)
Wild ramification and $K(\pi, 1)$ spaces (English)
Piotr Achinger 氏 (University of California, Berkeley)
Wild ramification and $K(\pi, 1)$ spaces (English)
[ 講演概要 ]
A smooth variety in characteristic zero is Zariski-locally a $K(\pi,1)$ space, i.e., has trivial higher homotopy groups. This fact is of crucial importance in Artin's proof that $\ell$-adic cohomology agrees with singular cohomology over $\mathbb{C}$. The characteristic $p$ variant of this is not known --- we do not even know whether the affine plane is a $K(\pi, 1)$ in positive characteristic! I will show how to reduce this question to a ``Bertini-type’' statement regarding wild ramification of $\ell$-adic local systems on affine spaces, which might be of independent interest. I will verify this statement in the special case of local systems of rank $1$ and speculate on how one might treat the general case.
A smooth variety in characteristic zero is Zariski-locally a $K(\pi,1)$ space, i.e., has trivial higher homotopy groups. This fact is of crucial importance in Artin's proof that $\ell$-adic cohomology agrees with singular cohomology over $\mathbb{C}$. The characteristic $p$ variant of this is not known --- we do not even know whether the affine plane is a $K(\pi, 1)$ in positive characteristic! I will show how to reduce this question to a ``Bertini-type’' statement regarding wild ramification of $\ell$-adic local systems on affine spaces, which might be of independent interest. I will verify this statement in the special case of local systems of rank $1$ and speculate on how one might treat the general case.