代数幾何学セミナー
過去の記録 ~01/29|次回の予定|今後の予定 01/30~
開催情報 | 火曜日 10:30~11:30 or 12:00 数理科学研究科棟(駒場) ハイブリッド開催/002号室 |
---|---|
担当者 | 權業 善範・中村 勇哉・田中公 |
2014年12月15日(月)
15:30-17:00 数理科学研究科棟(駒場) 122号室
三内 顕義 氏 (東京大学数理科学研究科)
A characterization of ordinary abelian varieties in positive characteristic (JAPANESE)
三内 顕義 氏 (東京大学数理科学研究科)
A characterization of ordinary abelian varieties in positive characteristic (JAPANESE)
[ 講演概要 ]
This is joint work with Hiromu Tanaka. In this talk, we study F^e_*O_X on a projective variety over the algebraic closed field of positive characteristic. For an ordinary abelian variety X, F^e_*O_X is decomposed into line bundles for every positive integer e. Conversely, if a smooth projective variety X satisfies this property and its Kodaira dimension is non-negative, then X is an ordinary abelian variety.
This is joint work with Hiromu Tanaka. In this talk, we study F^e_*O_X on a projective variety over the algebraic closed field of positive characteristic. For an ordinary abelian variety X, F^e_*O_X is decomposed into line bundles for every positive integer e. Conversely, if a smooth projective variety X satisfies this property and its Kodaira dimension is non-negative, then X is an ordinary abelian variety.