代数学コロキウム

過去の記録 ~09/18次回の予定今後の予定 09/19~

開催情報 水曜日 17:00~18:00 数理科学研究科棟(駒場) 117号室
担当者 今井 直毅,ケリー シェーン

2014年01月22日(水)

18:00-19:00   数理科学研究科棟(駒場) 117号室
いつもと場所が異なりますのでご注意ください
柏原正樹 氏 (京都大学数理解析研究所)
Riemann-Hilbert correspondence for irregular holonomic D-modules (ENGLISH)
[ 講演概要 ]
The classical Riemann-Hilbert correspondence establishes an equivalence between the derived category of regular holonomic D-modules and the derived category of constructible sheaves. Recently, I, with Andrea D'Agnolo, proved a Riemann-Hilbert correspondence for holonomic D-modules which are not necessarily regular (arXiv:1311.2374). In this correspondence, we have to replace the derived category of constructible sheaves with a full subcategory of ind-sheaves on the product of the base space and the real projective line. The construction is therefore based on the theory of ind-sheaves by Kashiwara-Schapira, and also it is influenced by Tamarkin's work. Among the main ingredients of our proof is the description of the structure of flat meromorphic connections due to Takuro Mochizuki and Kiran Kedlaya.
(本講演は「東京北京パリ数論幾何セミナー」として, インターネットによる東大数理, Morningside Center of MathematicsとIHESの双方向同時中継で行います.)