代数学コロキウム
過去の記録 ~12/08|次回の予定|今後の予定 12/09~
開催情報 | 水曜日 17:00~18:00 数理科学研究科棟(駒場) 117号室 |
---|---|
担当者 | 今井 直毅,ケリー シェーン |
2012年12月12日(水)
18:00-19:00 数理科学研究科棟(駒場) 002号室
François Charles 氏 (CNRS & Université de Rennes 1)
The Tate conjecture for K3 surfaces and holomorphic symplectic varieties over finite fields (ENGLISH)
François Charles 氏 (CNRS & Université de Rennes 1)
The Tate conjecture for K3 surfaces and holomorphic symplectic varieties over finite fields (ENGLISH)
[ 講演概要 ]
We prove the Tate conjecture for divisors on reductions of holomorphic symplectic varieties over finite fields -- with some restrictions on the characteristic of the base field. We will be concerned mostly with the supersingular case. As a special case, we prove the Tate conjecture, also known as Artin's conjecture in our case, for K3 surfaces over finite fields of characteristic at least 5 and for codimension 2 cycles on cubic fourfolds.
(本講演は「東京北京パリ数論幾何セミナー」として、インターネットによる東大数理, Morningside Center of MathematicsとIHESの双方向同時中継で行います.)
We prove the Tate conjecture for divisors on reductions of holomorphic symplectic varieties over finite fields -- with some restrictions on the characteristic of the base field. We will be concerned mostly with the supersingular case. As a special case, we prove the Tate conjecture, also known as Artin's conjecture in our case, for K3 surfaces over finite fields of characteristic at least 5 and for codimension 2 cycles on cubic fourfolds.
(本講演は「東京北京パリ数論幾何セミナー」として、インターネットによる東大数理, Morningside Center of MathematicsとIHESの双方向同時中継で行います.)