講演会

過去の記録 ~04/13次回の予定今後の予定 04/14~


2012年07月23日(月)

16:30-17:30   数理科学研究科棟(駒場) 126号室
Thomas W. Roby 氏 (University of Connecticut)
Combinatorial Ergodicity (ENGLISH)
[ 講演概要 ]
Many cyclic actions $\\tau$ on a finite set $S$ of
combinatorial objects, along with many natural
statistics $\\phi$ on $S$, exhibit``combinatorial ergodicity'':
the average of $\\phi$ over each $\\tau$-orbit in $S$ is
the same as the average of $\\phi$ over the whole set $S$.
One example is the case where $S$ is the set of
length $n$ binary strings $a_{1}\\dots a_{n}$
with exactly $k$ 1's,
$\\tau$ is the map that cyclically rotates them,
and $\\phi$ is the number of \\textit{inversions}
(i.e, pairs $(a_{i},a_{j})=(1,0)$ for $iJ$ less than $j$).

This phenomenon was first noticed by Panyushev
in 2007 in the context of antichains in root posets;
Armstrong, Stump, and Thomas proved his
conjecture in 2011.
We describe a theoretical framework for results of this kind,
and discuss old and new results for products of two chains.

This is joint work with Jim Propp.