Lectures
Seminar information archive ~12/26|Next seminar|Future seminars 12/27~
2012/07/23
16:30-17:30 Room #126 (Graduate School of Math. Sci. Bldg.)
Thomas W. Roby (University of Connecticut)
Combinatorial Ergodicity (ENGLISH)
Thomas W. Roby (University of Connecticut)
Combinatorial Ergodicity (ENGLISH)
[ Abstract ]
Many cyclic actions $\\tau$ on a finite set $S$ of
combinatorial objects, along with many natural
statistics $\\phi$ on $S$, exhibit``combinatorial ergodicity'':
the average of $\\phi$ over each $\\tau$-orbit in $S$ is
the same as the average of $\\phi$ over the whole set $S$.
One example is the case where $S$ is the set of
length $n$ binary strings $a_{1}\\dots a_{n}$
with exactly $k$ 1's,
$\\tau$ is the map that cyclically rotates them,
and $\\phi$ is the number of \\textit{inversions}
(i.e, pairs $(a_{i},a_{j})=(1,0)$ for $iJ$ less than $j$).
This phenomenon was first noticed by Panyushev
in 2007 in the context of antichains in root posets;
Armstrong, Stump, and Thomas proved his
conjecture in 2011.
We describe a theoretical framework for results of this kind,
and discuss old and new results for products of two chains.
This is joint work with Jim Propp.
Many cyclic actions $\\tau$ on a finite set $S$ of
combinatorial objects, along with many natural
statistics $\\phi$ on $S$, exhibit``combinatorial ergodicity'':
the average of $\\phi$ over each $\\tau$-orbit in $S$ is
the same as the average of $\\phi$ over the whole set $S$.
One example is the case where $S$ is the set of
length $n$ binary strings $a_{1}\\dots a_{n}$
with exactly $k$ 1's,
$\\tau$ is the map that cyclically rotates them,
and $\\phi$ is the number of \\textit{inversions}
(i.e, pairs $(a_{i},a_{j})=(1,0)$ for $iJ$ less than $j$).
This phenomenon was first noticed by Panyushev
in 2007 in the context of antichains in root posets;
Armstrong, Stump, and Thomas proved his
conjecture in 2011.
We describe a theoretical framework for results of this kind,
and discuss old and new results for products of two chains.
This is joint work with Jim Propp.


Text only print
Full screen print

