代数幾何学セミナー

過去の記録 ~06/24次回の予定今後の予定 06/25~

開催情報 金曜日 13:30~15:00 数理科学研究科棟(駒場) ハイブリッド開催/117号室
担当者 權業 善範、中村 勇哉、田中 公

2012年05月21日(月)

15:30-17:00   数理科学研究科棟(駒場) 122号室
鈴木拓 氏 (早稲田理工)
Characterizations of projective spaces and hyperquadrics
(JAPANESE)
[ 講演概要 ]
After Mori's works on Hartshorne's conjecture, many results to
characterize projective spaces and hyperquadrics in terms of
positivity properties of the tangent bundle have been provided.
Kov\\'acs' conjecture states that smooth complex projective
varieties are projective spaces or hyperquadrics if the $p$-th
exterior product of their tangent bundle contains the $p$-th
exterior product of an ample vector bundle. This conjecture is
the generalization of many preceding results. In this talk, I will
explain the idea of the proof of Kov\\'acs' conjecture for varieties
with Picard number one by using a method of slope-stabilities
of sheaves.