応用解析セミナー

過去の記録 ~07/21次回の予定今後の予定 07/22~

開催情報 木曜日 16:00~17:30 数理科学研究科棟(駒場) 002号室
担当者 石毛 和弘

2011年05月26日(木)

16:00-17:30   数理科学研究科棟(駒場) 128号室
深尾武史 氏 (京都教育大学)
Obstacle problem of Navier-Stokes equations in thermohydraulics (JAPANESE)
[ 講演概要 ]
In this talk, we consider the well-posedness of a variational inequality for the Navier-Stokes equations in 2 or 3 space dimension with time dependent constraints. This problem is motivated by an initial-boundary value problem for a thermohydraulics model. The velocity field is constrained by a prescribed function,
depending on the space and time variables, so this is called the obstacle problem. The abstract theory of nonlinear evolution equations governed by subdifferentials of time dependent convex functionals is quite useful for showing their well-posedness. In their mathematical treatment one of the key is to specify the class of time-dependence of convex functionals. We shall discuss the existence and uniqueness questions for Navier-Stokes variational inequalities, in which a bounded constraint is imposed on the velocity field, in higher space dimensions. Especially, the uniqueness of a solution is due to the advantage of the prescribed constraint to the velocity fields.