代数幾何学セミナー
過去の記録 ~03/25|次回の予定|今後の予定 03/26~
開催情報 | 火曜日 10:30~11:30 or 12:00 数理科学研究科棟(駒場) ハイブリッド開催/002号室 |
---|---|
担当者 | 權業 善範・中村 勇哉・田中公 |
2011年07月04日(月)
16:30-18:00 数理科学研究科棟(駒場) 126号室
永井 保成 氏 (早稲田大学理工学術院基幹理工学部数学科)
Birational Geometry of O'Grady's six dimensional example over the Donaldson-Uhlenbeck compactification (JAPANESE)
永井 保成 氏 (早稲田大学理工学術院基幹理工学部数学科)
Birational Geometry of O'Grady's six dimensional example over the Donaldson-Uhlenbeck compactification (JAPANESE)
[ 講演概要 ]
O'Grady constructed two sporadic examples of compact irreducible symplectic Kaehler manifold, by resolving singular moduli spaces of sheaves on a K3 surface or an abelian surface. We will give a full description of the birational geometry of O'Grady's six dimensional example over the corresponding Donaldson-Uhlenbeck compactification, using an explicit calculation of certain kind of GIT quotients.
If time permits, we will also discuss an involution of the example induced by a Fourier-Mukai transformation.
O'Grady constructed two sporadic examples of compact irreducible symplectic Kaehler manifold, by resolving singular moduli spaces of sheaves on a K3 surface or an abelian surface. We will give a full description of the birational geometry of O'Grady's six dimensional example over the corresponding Donaldson-Uhlenbeck compactification, using an explicit calculation of certain kind of GIT quotients.
If time permits, we will also discuss an involution of the example induced by a Fourier-Mukai transformation.