代数幾何学セミナー
過去の記録 ~05/01|次回の予定|今後の予定 05/02~
開催情報 | 金曜日 13:30~15:00 数理科学研究科棟(駒場) 118号室 |
---|---|
担当者 | 權業 善範、河上 龍郎 、榎園 誠 |
2010年11月29日(月)
16:40-18:10 数理科学研究科棟(駒場) 126号室
大橋 久範 氏 (名古屋大学大学院多元数理科学研究科)
K3 surfaces and log del Pezzo surfaces of index three (JAPANESE)
大橋 久範 氏 (名古屋大学大学院多元数理科学研究科)
K3 surfaces and log del Pezzo surfaces of index three (JAPANESE)
[ 講演概要 ]
Alexeev and Nikulin have classified log del Pezzo surfaces of index 1 and 2 by using the classification of non-symplectic involutions on K3 surfaces. We want to discuss the generalization of this result to the index 3 cases. In this case we are also able to construct log del Pezzos $Z$ from K3 surfaces $X$, but the converse is not necessarily true. The condition on $Z$ is exactly the "multiple smooth divisor property", which we will define. Our theorem is the classification of log del Pezzo surfaces of index 3 with this property.
The idea of the proof is similar to that of Alexeev and Nikulin, but the methods are different because of the existence of singularities: although the singularity is mild, the description of nef cone by reflection groups cannot be used. Instead
we construct and analyze good elliptic fibrations on K3 surfaces $X$ and use it to obtain the classification. It includes a partial but geometric generalization of the classification of non-symplectic automorphisms of order three, recently done by Artebani, Sarti and Taki.
Alexeev and Nikulin have classified log del Pezzo surfaces of index 1 and 2 by using the classification of non-symplectic involutions on K3 surfaces. We want to discuss the generalization of this result to the index 3 cases. In this case we are also able to construct log del Pezzos $Z$ from K3 surfaces $X$, but the converse is not necessarily true. The condition on $Z$ is exactly the "multiple smooth divisor property", which we will define. Our theorem is the classification of log del Pezzo surfaces of index 3 with this property.
The idea of the proof is similar to that of Alexeev and Nikulin, but the methods are different because of the existence of singularities: although the singularity is mild, the description of nef cone by reflection groups cannot be used. Instead
we construct and analyze good elliptic fibrations on K3 surfaces $X$ and use it to obtain the classification. It includes a partial but geometric generalization of the classification of non-symplectic automorphisms of order three, recently done by Artebani, Sarti and Taki.