代数幾何学セミナー
過去の記録 ~09/18|次回の予定|今後の予定 09/19~
開催情報 | 金曜日 13:30~15:00 数理科学研究科棟(駒場) ハイブリッド開催/117号室 |
---|---|
担当者 | 權業 善範、中村 勇哉、田中 公 |
2010年11月16日(火)
16:30-18:00 数理科学研究科棟(駒場) 122号室
Viacheslav Nikulin 氏 (Univ Liverpool and Steklov Moscow)
Self-corresponences of K3 surfaces via moduli of sheaves (ENGLISH)
Viacheslav Nikulin 氏 (Univ Liverpool and Steklov Moscow)
Self-corresponences of K3 surfaces via moduli of sheaves (ENGLISH)
[ 講演概要 ]
In series of our papers with Carlo Madonna (2002--2008) we described self-correspondences via moduli of sheaves with primitive isotropic Mukai vectors for K3 surfaces with Picard number one or two. Here, we give a natural and functorial answer to the same problem for arbitrary Picard number of K3 surfaces. As an application, we characterize in terms of self-correspondences via moduli of sheaves K3 surfaces with reflective Picard lattices, that is when the automorphism group of the lattice is generated by reflections up to finite index. See some details in arXiv:0810.2945.
In series of our papers with Carlo Madonna (2002--2008) we described self-correspondences via moduli of sheaves with primitive isotropic Mukai vectors for K3 surfaces with Picard number one or two. Here, we give a natural and functorial answer to the same problem for arbitrary Picard number of K3 surfaces. As an application, we characterize in terms of self-correspondences via moduli of sheaves K3 surfaces with reflective Picard lattices, that is when the automorphism group of the lattice is generated by reflections up to finite index. See some details in arXiv:0810.2945.