代数学コロキウム
過去の記録 ~03/26|次回の予定|今後の予定 03/27~
開催情報 | 水曜日 17:00~18:00 数理科学研究科棟(駒場) 117号室 |
---|---|
担当者 | 今井 直毅,ケリー シェーン |
2010年06月16日(水)
16:30-17:30 数理科学研究科棟(駒場) 056号室
Luc Illusie 氏 (Universite de Paris-Sud)
Vanishing theorems revisited, after K.-W. Lan and J. Suh (ENGLISH)
Luc Illusie 氏 (Universite de Paris-Sud)
Vanishing theorems revisited, after K.-W. Lan and J. Suh (ENGLISH)
[ 講演概要 ]
Let k be an algebraically closed field of characteristic p and X,
Y proper, smooth k-schemes. J. Suh has proved a vanishing theorem of Kollar
type for certain nef and big line bundles L on Y and morphisms f : X -> Y
having semistable reduction along a divisor with simple normal crossings. It
holds both if p = 0 and if p > 0 modulo some additional liftability mod p^2
and dimension assumptions, and generalizes vanishing theorems of Esnault-
Viehweg and of mine. I'll give an outline of the proof and sketch some
applications, due to K.-W. Lan and J. Suh, to the cohomology of certain
automorphic bundles arising from PEL type Shimura varieties.
Let k be an algebraically closed field of characteristic p and X,
Y proper, smooth k-schemes. J. Suh has proved a vanishing theorem of Kollar
type for certain nef and big line bundles L on Y and morphisms f : X -> Y
having semistable reduction along a divisor with simple normal crossings. It
holds both if p = 0 and if p > 0 modulo some additional liftability mod p^2
and dimension assumptions, and generalizes vanishing theorems of Esnault-
Viehweg and of mine. I'll give an outline of the proof and sketch some
applications, due to K.-W. Lan and J. Suh, to the cohomology of certain
automorphic bundles arising from PEL type Shimura varieties.