代数学コロキウム
過去の記録 ~10/06|次回の予定|今後の予定 10/07~
開催情報 | 水曜日 17:00~18:00 数理科学研究科棟(駒場) 117号室 |
---|---|
担当者 | 今井 直毅,ケリー シェーン |
2010年06月02日(水)
16:30-17:30 数理科学研究科棟(駒場) 056号室
富安亮子 氏 (高エネルギー加速器研究機構)
On some algebraic properties of CM-types of CM-fields and their
reflex fields (JAPANESE)
富安亮子 氏 (高エネルギー加速器研究機構)
On some algebraic properties of CM-types of CM-fields and their
reflex fields (JAPANESE)
[ 講演概要 ]
Shimura and Taniyama proved in their theory of complex
multiplication that the moduli of abelian varieties of a CM-type and their
torsion points generate an abelian extension, not of the field of complex
multiplication, but of a reflex field of the field. In this talk, I
introduce some algebraic properties of CM-types, half norm maps that might
shed new light on reflex fields.
For a CM-field $K$ and its Galois closure $K^c$ over the rational field $Q$,
there is a canonical embedding of $Gal (K^c/Q)$ into $(Z/2Z)^n \\rtimes S_n$.
Using properties of the embedding, a set of CM-types $\\Phi$ of $K$ and their
dual CM-types $(K, \\Phi)$ is equipped with a combinatorial structure. This
makes it much easier to handle a whole set of CM-types than an individual
CM-type.
I present a theorem that shows the combinatorial structure of the dual
CM-types is isomorphic to that of a Pfister form.
Shimura and Taniyama proved in their theory of complex
multiplication that the moduli of abelian varieties of a CM-type and their
torsion points generate an abelian extension, not of the field of complex
multiplication, but of a reflex field of the field. In this talk, I
introduce some algebraic properties of CM-types, half norm maps that might
shed new light on reflex fields.
For a CM-field $K$ and its Galois closure $K^c$ over the rational field $Q$,
there is a canonical embedding of $Gal (K^c/Q)$ into $(Z/2Z)^n \\rtimes S_n$.
Using properties of the embedding, a set of CM-types $\\Phi$ of $K$ and their
dual CM-types $(K, \\Phi)$ is equipped with a combinatorial structure. This
makes it much easier to handle a whole set of CM-types than an individual
CM-type.
I present a theorem that shows the combinatorial structure of the dual
CM-types is isomorphic to that of a Pfister form.