講演会
過去の記録 ~12/07|次回の予定|今後の予定 12/08~
2010年05月12日(水)
15:30-17:00 数理科学研究科棟(駒場) 123号室
3回連続の最終回です。前2回より開始時間が早いのでご注意ください。
教室を変更しましたのでご注意ください。
Luc Illusie 氏 (東京大学/Paris南大学)
Independence of families of $\\ell$-adic representations and uniform constructibility (ENGLISH)
3回連続の最終回です。前2回より開始時間が早いのでご注意ください。
教室を変更しましたのでご注意ください。
Luc Illusie 氏 (東京大学/Paris南大学)
Independence of families of $\\ell$-adic representations and uniform constructibility (ENGLISH)
[ 講演概要 ]
Let $k$ be a number field, $\\overline{k}$ an algebraic closure of $k$, $\\Gamma_k = \\mathrm{Gal}(\\overline{k}/k)$. A family of continuous homomorphisms $\\rho_{\\ell} : \\Gamma_k \\rightarrow G_{\\ell}$, indexed by prime numbers $\\ell$, where $G_{\\ell}$ is a locally compact $\\ell$-adic Lie group, is said to be independent if $\\rho(\\Gamma_k) = \\prod \\rho_{\\ell}(\\Gamma_k)$, where $\\rho = (\\rho_{\\ell}) : \\Gamma_k \\rightarrow \\prod G_{\\ell}$. Serre gave a criterion for such a family to become independent after a finite extension of $k$. We will explain Serre's criterion and show that it applies to families coming from the $\\ell$-adic cohomology (or cohomology with compact support) of schemes separated and of finite type over $k$. This application uses a variant of Deligne's generic constructibility theorem with uniformity in $\\ell$.
Let $k$ be a number field, $\\overline{k}$ an algebraic closure of $k$, $\\Gamma_k = \\mathrm{Gal}(\\overline{k}/k)$. A family of continuous homomorphisms $\\rho_{\\ell} : \\Gamma_k \\rightarrow G_{\\ell}$, indexed by prime numbers $\\ell$, where $G_{\\ell}$ is a locally compact $\\ell$-adic Lie group, is said to be independent if $\\rho(\\Gamma_k) = \\prod \\rho_{\\ell}(\\Gamma_k)$, where $\\rho = (\\rho_{\\ell}) : \\Gamma_k \\rightarrow \\prod G_{\\ell}$. Serre gave a criterion for such a family to become independent after a finite extension of $k$. We will explain Serre's criterion and show that it applies to families coming from the $\\ell$-adic cohomology (or cohomology with compact support) of schemes separated and of finite type over $k$. This application uses a variant of Deligne's generic constructibility theorem with uniformity in $\\ell$.