代数学コロキウム
過去の記録 ~02/12|次回の予定|今後の予定 02/13~
開催情報 | 水曜日 17:00~18:00 数理科学研究科棟(駒場) 117号室 |
---|---|
担当者 | 今井 直毅,ケリー シェーン |
2009年10月21日(水)
16:30-17:30 数理科学研究科棟(駒場) 056号室
Bernard Le Stum 氏 (Université de Rennes 1)
The local Simpson correspondence in positive characteristic
Bernard Le Stum 氏 (Université de Rennes 1)
The local Simpson correspondence in positive characteristic
[ 講演概要 ]
A Simpson correspondance should relate Higgs bundles to differential modules (or local systems). We stick here to positive characteristic and recall some old and recent results : Cartier isomorphism, Van der Put's classification, Kaneda's theorem and Ogus-Vologodsky local theory. We'll try to explain how the notion of Azumaya algebra is a convenient tool to unify these results. Our main theorem is the equivalence between quasi-nilpotent differential modules of level m and quasi-nilpotent Higgs Bundles (depending on a lifting of Frobenius mod p-squared). This result is a direct generalization of the previous ones. The main point is to understand the Azumaya nature of the ring of differential operators of level m. Following Berthelot, we actually use the dual theory and study the partial divided power neighborhood of the diagonal.
A Simpson correspondance should relate Higgs bundles to differential modules (or local systems). We stick here to positive characteristic and recall some old and recent results : Cartier isomorphism, Van der Put's classification, Kaneda's theorem and Ogus-Vologodsky local theory. We'll try to explain how the notion of Azumaya algebra is a convenient tool to unify these results. Our main theorem is the equivalence between quasi-nilpotent differential modules of level m and quasi-nilpotent Higgs Bundles (depending on a lifting of Frobenius mod p-squared). This result is a direct generalization of the previous ones. The main point is to understand the Azumaya nature of the ring of differential operators of level m. Following Berthelot, we actually use the dual theory and study the partial divided power neighborhood of the diagonal.