代数学コロキウム
過去の記録 ~05/01|次回の予定|今後の予定 05/02~
開催情報 | 水曜日 17:00~18:00 数理科学研究科棟(駒場) 117号室 |
---|---|
担当者 | 今井 直毅,ケリー シェーン |
2008年12月03日(水)
16:30-17:30 数理科学研究科棟(駒場) 056号室
鈴木正俊 氏 (東京大学大学院数理科学研究科)
Mean-periodicity and analytic properties of zeta-functions
鈴木正俊 氏 (東京大学大学院数理科学研究科)
Mean-periodicity and analytic properties of zeta-functions
[ 講演概要 ]
Mean-periodicityというのは周期性の概念のひとつの一般化である。最近、I. Fesenko, G. Ricottaとの共同研究により、数論的スキームのゼータ関数を含むある複素関数のクラスと、mean-periodicityとの関連性が新しく見出された。
これはHecke-Weilによる, 解析接続と関数等式を持つDirichlet級数と保型形式との対応の一つの拡張ともみなせる. この背景には, I. Fesenkoの高次元アデール上のゼータ積分の理論があり、数論的スキームのHasseゼータ関数の解析接続を高次元アデール上の調和解析から導こうというプログラムの一環となっている。
この講演ではそのような背景にも若干触れた上、ゼータ関数の解析的性質とmean-periodicityの関連、特に解析接続と関数等式との関連について解説する。
Mean-periodicityというのは周期性の概念のひとつの一般化である。最近、I. Fesenko, G. Ricottaとの共同研究により、数論的スキームのゼータ関数を含むある複素関数のクラスと、mean-periodicityとの関連性が新しく見出された。
これはHecke-Weilによる, 解析接続と関数等式を持つDirichlet級数と保型形式との対応の一つの拡張ともみなせる. この背景には, I. Fesenkoの高次元アデール上のゼータ積分の理論があり、数論的スキームのHasseゼータ関数の解析接続を高次元アデール上の調和解析から導こうというプログラムの一環となっている。
この講演ではそのような背景にも若干触れた上、ゼータ関数の解析的性質とmean-periodicityの関連、特に解析接続と関数等式との関連について解説する。