応用解析セミナー
過去の記録 ~01/14|次回の予定|今後の予定 01/15~
開催情報 | 木曜日 16:00~17:30 数理科学研究科棟(駒場) 002号室 |
---|---|
担当者 | 石毛 和弘 |
2008年11月20日(木)
16:00-17:30 数理科学研究科棟(駒場) 002号室
Jan Haskovec
氏 (Vienna University of Technology(オーストリア))
Stochastic Particle Approximation for Measure Valued Solutions of the 2D Keller-Segel System
Jan Haskovec
氏 (Vienna University of Technology(オーストリア))
Stochastic Particle Approximation for Measure Valued Solutions of the 2D Keller-Segel System
[ 講演概要 ]
We construct an approximation to the measure valued, global in time solutions to the Keller-Segel model in 2D, based on systems of stochastic interacting particles. The advantage of our approach is that it reproduces the well-known dichtomy in the qualitative behavior of the system and, moreover, captures the solution even after the possible blow-up events. We present a numerical method based on this approach and show some numerical results. Moreover, we make a first step toward the convergence analysis of our scheme by proving the convergence of the stochastic particle approximation for the Keller-Segel model with a regularized interaction potential. The proof is based on a BBGKY-like approach for the corresponding particle distribution function.
We construct an approximation to the measure valued, global in time solutions to the Keller-Segel model in 2D, based on systems of stochastic interacting particles. The advantage of our approach is that it reproduces the well-known dichtomy in the qualitative behavior of the system and, moreover, captures the solution even after the possible blow-up events. We present a numerical method based on this approach and show some numerical results. Moreover, we make a first step toward the convergence analysis of our scheme by proving the convergence of the stochastic particle approximation for the Keller-Segel model with a regularized interaction potential. The proof is based on a BBGKY-like approach for the corresponding particle distribution function.