応用解析セミナー

過去の記録 ~10/09次回の予定今後の予定 10/10~

開催情報 木曜日 16:00~17:30 数理科学研究科棟(駒場) 002号室
担当者 石毛 和弘

2008年07月10日(木)

16:00-17:30   数理科学研究科棟(駒場) 002号室
渡辺 達也 氏 (早稲田大学・理工学術院)
Two positive solutions for an inhomogeneous scalar field equation
[ 講演概要 ]
We consider the following nonlinear elliptic equation:
$$-\\Delta u+u=g(u)+f(x), x \\in R^N,$$
where $N\\ge 3$. When $f(x)\\equiv 0$, it is known that there is a nontrivial solution for a wide class of nonlinearities. Even though $f(x) \\not\\equiv 0$, we can expect the existence of a nontrivial solution if $f(x)$ is small in a suitable sense. Our purpose is to show the existence of two positive solutions via the variational approach when $\\| f\\|_{L^2}$ is small. The first solution is characterized as a local minimizer. The second solution will be obtained by the Mountain Pass Method. Since we do not impose any global condition on the nonlinearity, we will need a presice interaction estimate.