応用解析セミナー

過去の記録 ~01/29次回の予定今後の予定 01/30~

開催情報 木曜日 16:00~17:30 数理科学研究科棟(駒場) 002号室
担当者 石毛 和弘

2008年06月19日(木)

16:00-17:30   数理科学研究科棟(駒場) 002号室
谷口 雅治 氏 (東京工業大学大学院情報理工学研究科)
Allen-Cahn方程式における角錐型進行波の一意性と安定性
(The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen-Cahn equations)

[ 講演概要 ]
We study the uniqueness and the asymptotic stability of a pyramidal traveling front in the three-dimensional whole space. For a given admissible pyramid we prove that a pyramidal traveling front is uniquely determined and that it is asymptotically stable under the condition that given perturbations decay at infinity. For this purpose we characterize the pyramidal traveling front as a combination of planar fronts on the lateral surfaces. Moreover we characterize the pyramidal traveling front in another way, that is, we write it as a combination of two-dimensional V-form waves on the edges. This characterization also uniquely determines a pyramidal traveling front.