代数幾何学セミナー
過去の記録 ~01/23|次回の予定|今後の予定 01/24~
開催情報 | 金曜日 13:30~15:00 数理科学研究科棟(駒場) ハイブリッド開催/117号室 |
---|---|
担当者 | 權業 善範、中村 勇哉、田中 公 |
2008年03月14日(金)
16:30-18:00 数理科学研究科棟(駒場) 126号室
David Morrison 氏 (UC Santa Barbara)
Understanding singular algebraic varieties via string theory
David Morrison 氏 (UC Santa Barbara)
Understanding singular algebraic varieties via string theory
[ 講演概要 ]
String theory has helped to formulate two major new insights in the study of singular algebraic varieties. The first -- which also arose from symplectic geometry -- is that families of Kaehler metrics are an important tool in uncovering the structure of singular algebraic varieties. The second, more recent insight -- related to independent work in the representation theory of associative algebras -- is that one's understanding of a singular (affine) algebraic variety is enhanced if one can find a non-commutative ring whose center is the coordinate ring of the variety. We will describe both of these insights, and explain how they are related to string theory.
String theory has helped to formulate two major new insights in the study of singular algebraic varieties. The first -- which also arose from symplectic geometry -- is that families of Kaehler metrics are an important tool in uncovering the structure of singular algebraic varieties. The second, more recent insight -- related to independent work in the representation theory of associative algebras -- is that one's understanding of a singular (affine) algebraic variety is enhanced if one can find a non-commutative ring whose center is the coordinate ring of the variety. We will describe both of these insights, and explain how they are related to string theory.