代数幾何学セミナー

過去の記録 ~11/16次回の予定今後の予定 11/17~

開催情報 火曜日 15:30~17:00 数理科学研究科棟(駒場) 122号室
担当者 權業 善範・中村 勇哉・田中公

次回の予定

2018年11月20日(火)

15:30-17:00   数理科学研究科棟(駒場) 122号室
中島 幸喜 氏 (東京電機大)
Artin-Mazur height, Yobuko height and
Hodge-Wittt cohomologies

[ 講演概要 ]
A few years ago Yobuko has introduced the notion of
a delicate invariant for a proper smooth scheme over a perfect field $k$
of finite characteristic. (We call this invariant Yobuko height.)
This generalize the notion of the F-splitness due to Mehta-Srinivas.

In this talk we give relations between Artin-Mazur heights
and Yobuko heights. We also give a finiteness result on
Hodge-Witt cohomologies of a proper smooth scheme $X$ over $k$
with finite Yobuko height. If time permits, we give a cofinite type result on
the $p$-primary torsion part of Chow group of of $X$
of codimension 2 if $\dim X=3$.