代数学コロキウム

過去の記録 ~11/19次回の予定今後の予定 11/20~

開催情報 水曜日 17:00~18:00 数理科学研究科棟(駒場) 056号室
担当者 今井 直毅, 三枝 洋一

2017年09月27日(水)

17:30-18:30   数理科学研究科棟(駒場) 056号室
加藤和也 氏 (University of Chicago)
Height functions for motives, Hodge analogues, and Nevanlinna analogues (ENGLISH)
[ 講演概要 ]
We compare height functions for (1) points of an algebraic variety over a number field, (2) motives over a number field, (3) variations of Hodge structure with log degeneration on a projective smooth curve over the complex number field, (4) horizontal maps from the complex plane C to a toroidal partial compactification of the period domain. Usual Nevanlinna theory uses height functions for (5) holomorphic maps f from C to a compactification of an agebraic variety V and considers how often the values of f lie outside V. Vojta compares (1) and (5). In (4), V is replaced by a period domain. The comparisons of (1)--(4) provide many new questions to study.