幾何コロキウム
過去の記録 ~05/01|次回の予定|今後の予定 05/02~
開催情報 | 金曜日 10:00~11:30 数理科学研究科棟(駒場) 126号室 |
---|---|
担当者 | 植田一石,金井雅彦,二木昭人 |
備考 | 開始時間と開催場所などは変更されることがあるので, セミナーごとにご確認ください. |
2013年12月05日(木)
10:00-11:30 数理科学研究科棟(駒場) 122号室
開始時間と開催場所などは変更されることがあるので, セミナーごとにご確認ください.
山田澄生 氏 (学習院大学)
Variational characterizations of exact solutions of the Einstein equation (JAPANESE)
開始時間と開催場所などは変更されることがあるので, セミナーごとにご確認ください.
山田澄生 氏 (学習院大学)
Variational characterizations of exact solutions of the Einstein equation (JAPANESE)
[ 講演概要 ]
There are a set of well-known exact solutions to the Einstein equation. The most important one is the Schwarzschild metric, and it models a Ricci-flat space-time, which is asymptotically flat. In addition, there are the Reissner-Nordstrom metric and the Majumdar-Papapetrou metric, which satisfy the Einstein-Maxwell equation, instead of the vacuum Einstein equation. In a jointwork with Marcus Khuri and Gilbert Weinstein, it is shown that those metrics are characterized as the equality
cases of a set of so-called Penrose-type inequalities. The method of proof is a
conformal deformation of Riemannian metrics defined on the space-like slice of the space-time.
There are a set of well-known exact solutions to the Einstein equation. The most important one is the Schwarzschild metric, and it models a Ricci-flat space-time, which is asymptotically flat. In addition, there are the Reissner-Nordstrom metric and the Majumdar-Papapetrou metric, which satisfy the Einstein-Maxwell equation, instead of the vacuum Einstein equation. In a jointwork with Marcus Khuri and Gilbert Weinstein, it is shown that those metrics are characterized as the equality
cases of a set of so-called Penrose-type inequalities. The method of proof is a
conformal deformation of Riemannian metrics defined on the space-like slice of the space-time.