古典解析セミナー

過去の記録 ~09/27次回の予定今後の予定 09/28~

担当者 大島 利雄, 坂井 秀隆

2022年09月26日(月)

14:00-17:00   数理科学研究科棟(駒場) 118号室
伊藤公毅 氏 (大阪電気通信大学)
差分加群とホモロジー 1 (JAPANESE)
[ 講演概要 ]
(今回ほとんどはq差分)
以下2つのテーマについてお話ししたい:
テーマI---q差分ド・ラームコホモロジーとqサイクルのホモロジー
(i) q差分ド・ラーム・コホモロジーの定義
(ii) そのdualとしてあるべきqサイクルのホモロジーの定義
(ii)' それらのpairingであるべきq積分の定義(というか、(ii)'をみながら(ii)をつくる、というのが思考の流れではある)
テーマII---差分加群の理論整備にむけて
(i) コーシー問題とは何か
(ii) 非特性的とは
(iii) holonomicとは

特殊函数(とりわけ超幾何系)の研究で、積分表示が強力な武器となることは皆さんよくご承知と思う。積分表示的手法は、位相幾何や代数幾何も活用する「複素積分の理論」(ツイスト・ド・ラーム理論)として現代化・整備されるに至った。さて、q特殊函数の研究にもジャクソン積分表示が有効な武器になることが明らかになってきており、q差分ド・ラーム理論が提案されるに至った。この事情について、

https://www.jstage.jst.go.jp/pub/pdfpreview/sugaku1947/49/4_49_4_350.jpg
(雑誌「数学」49(1997)-4, 350-364)

を予めみておくと把握できよう。この論説を理解したい、あるいは、もう少し明快に再定式化したいというのが今回お話しすることを考え始めた動機である。たとえば、qの世界では、接空間や余接空間の概念として十分といえるものは未だみつかっていない(と思う)。従って、q差分形式といっても、自然な定式化がみえにくい。また、ライプニッツ則のズレや座標変換への強い制約などの困難がある。ここについて、1つの有望な打開策が「q差分加群」による定式化である。q差分加群とはD加群のq差分版である。q差分ド・ラーム・コホモロジー(複体)も「q差分加群のド・ラーム・コホモロジー」として自然に定義される。(論理的には、q差分形式を飛び越えて直接定義できる(本地)。但し、「手で扱える」ようにするためにq差分形式(垂迹)をとることになる。)ここで、q差分加群を導入するために、新たな位相(あるグロタンディーク位相)を考える必要が出てくる。今回は、グロタンディーく位相の定義の復習からお話しする。また、コホモロジー類の積分についても、これまで、ジャクソン積分を用いたり複素周回積分を用いたりと込み入っている。今回の講演では、これらを含む「q積分」を導入する。現在、ほぼ出来上がっている1次元の場合について上記のことを述べることにする。高次元について、できているところに限りお話ししたい。ここまでが第一のテーマである。

q差分加群なるものを登場させた以上、その基礎理論の整備は必須であろう。これが第2のテーマである。D加群の理論が(主として線形)偏微分方程式の一般論を与えるものであるものなら、q差分加群の理論は偏q差分方程式の一般論を与えねばなるまい。しかしながら、偏(q)差分方程式の一般論はおろか、各論だって多くは知られていないのではないだろうか?(どなたかご存じの方は、この機会にお教えいただけると有難いです。)手始めに、「コーシー問題とは何か」「非特性的とは」「表象とは」についての考察を述べる。その延長上にホロノミックを位置づけることを試みる。ただし、この部分については、現在進行形で完成形ではない。(前述の通り、余接空間にあたるものが不在であるため、聊かアドホックな感が否めない。)

今回の講演では、現在進行形の部分もあり、お聞き苦しいところが出てくるかもしれませんが、どうかよろしくお願いいたします。