離散数理モデリングセミナー
過去の記録 ~12/08|次回の予定|今後の予定 12/09~
担当者 | 時弘哲治, ウィロックス ラルフ |
---|
2021年07月07日(水)
17:15-19:00 オンライン開催
Zoomを用いてオンラインで行います.参加希望の方はウィロックスまでZoomのリンクをお尋ねください.
岩尾慎介 氏 (東海大学)
K-理論版特殊多項式の組み合わせ論、自由フェルミオン表示と可積分系 (Japanese)
Zoomを用いてオンラインで行います.参加希望の方はウィロックスまでZoomのリンクをお尋ねください.
岩尾慎介 氏 (東海大学)
K-理論版特殊多項式の組み合わせ論、自由フェルミオン表示と可積分系 (Japanese)
[ 講演概要 ]
旗多様体にまつわる代数的組み合わせ論は、表現論・幾何学・可積分系などの分野と絡み合い、様々な解釈を持つ豊かな分野として今も研究が進んでいる。
旗多様体のコホモロジー環はある多項式環と自然に同一視され、そのなかでシューベルト多様体はシューベルト多項式という特殊多項式に対応する。コホモロジー環の部分をK理論に置き換えて同じ議論を行うと、今度はグロタンディーク多項式が得られる。以上の事実やその一般化は多くの研究者によって調べられており、シューベルト多項式・グロタンディーク多項式は多くの組み合わせ論的題材を提供している。本講演では、ソリトン方程式の理論と関係の深い自由フェルミオンを用いて、対称グロタンディーク多項式(とその双対)の新しい表示法を与える。この自由フェルミオン表示が有用であることは、組み合わせ論的観点からは説明しやすい。しかし、この結果がソリトン方程式の理論とどうつながるのかは未知であり、興味深い問題である。この講演ではこの問題点を提示し、ソリトン方程式の理論とK-理論版特殊多項式の関係性について考察したい。
旗多様体にまつわる代数的組み合わせ論は、表現論・幾何学・可積分系などの分野と絡み合い、様々な解釈を持つ豊かな分野として今も研究が進んでいる。
旗多様体のコホモロジー環はある多項式環と自然に同一視され、そのなかでシューベルト多様体はシューベルト多項式という特殊多項式に対応する。コホモロジー環の部分をK理論に置き換えて同じ議論を行うと、今度はグロタンディーク多項式が得られる。以上の事実やその一般化は多くの研究者によって調べられており、シューベルト多項式・グロタンディーク多項式は多くの組み合わせ論的題材を提供している。本講演では、ソリトン方程式の理論と関係の深い自由フェルミオンを用いて、対称グロタンディーク多項式(とその双対)の新しい表示法を与える。この自由フェルミオン表示が有用であることは、組み合わせ論的観点からは説明しやすい。しかし、この結果がソリトン方程式の理論とどうつながるのかは未知であり、興味深い問題である。この講演ではこの問題点を提示し、ソリトン方程式の理論とK-理論版特殊多項式の関係性について考察したい。