統計数学セミナー
過去の記録 ~10/03|次回の予定|今後の予定 10/04~
担当者 | 吉田朋広、増田弘毅、荻原哲平、小池祐太 |
---|---|
セミナーURL | http://www.sigmath.es.osaka-u.ac.jp/~kamatani/statseminar/ |
目的 | 確率統計学およびその関連領域に関する研究発表, 研究紹介を行う. |
2021年03月29日(月)
14:00-15:10 オンライン開催
参加希望の方は以下のGoogle Formより3日前までにご登録ください。 締切後、会議参加に必要なURLを送付いたします。
今泉允聡 氏 (東京大学)
ガウス近似を用いたM推定量の統計的推論 (JAPANESE)
https://docs.google.com/forms/d/e/1FAIpQLSfjQhmmZjWUllB6pQeEMGDRcLCe_0JPgVbEA05rHtcDYAZzqg/viewform
参加希望の方は以下のGoogle Formより3日前までにご登録ください。 締切後、会議参加に必要なURLを送付いたします。
今泉允聡 氏 (東京大学)
ガウス近似を用いたM推定量の統計的推論 (JAPANESE)
[ 講演概要 ]
M推定量とは、経験基準関数の最大化として定義される推定量で、最尤推定量や経験誤差最小化推定量を含む広い推定量の広いクラスである。M推定量の分布を近似することは、多くの統計的推論の基盤をなす重要な研究トピックであ理、これまで各論および一般論を問わず多くの研究が行われてきた。本研究では、既存の極限分布を用いたアプローチとは対照的に、非漸近的なガウス過程による近似法を採用し、M推定量の分布近似理論を構成した。加えて、実用的なガウス係数ブートストラップ近似法を提案した。これらのアプローチは、近年発展著しい経験過程の最大値の分布近似理論を拡張することで得られている。本研究は、最小絶対偏差推定量のような正則的な推定量だけでなく、non-Donsker級やcubic-root推定量のような、漸近分布の導出や数値計算が困難な非正則な場合を扱うことができる。
[ 参考URL ]M推定量とは、経験基準関数の最大化として定義される推定量で、最尤推定量や経験誤差最小化推定量を含む広い推定量の広いクラスである。M推定量の分布を近似することは、多くの統計的推論の基盤をなす重要な研究トピックであ理、これまで各論および一般論を問わず多くの研究が行われてきた。本研究では、既存の極限分布を用いたアプローチとは対照的に、非漸近的なガウス過程による近似法を採用し、M推定量の分布近似理論を構成した。加えて、実用的なガウス係数ブートストラップ近似法を提案した。これらのアプローチは、近年発展著しい経験過程の最大値の分布近似理論を拡張することで得られている。本研究は、最小絶対偏差推定量のような正則的な推定量だけでなく、non-Donsker級やcubic-root推定量のような、漸近分布の導出や数値計算が困難な非正則な場合を扱うことができる。
https://docs.google.com/forms/d/e/1FAIpQLSfjQhmmZjWUllB6pQeEMGDRcLCe_0JPgVbEA05rHtcDYAZzqg/viewform