離散数理モデリングセミナー
過去の記録 ~09/18|次回の予定|今後の予定 09/19~
担当者 | 時弘哲治, ウィロックス ラルフ |
---|
2021年01月13日(水)
17:00-18:00 オンライン開催
Zoomを用いてオンラインで行います.参加希望の方はウィロックスまでZoomのリンクをお尋ねください.
米山 瑛仁 氏 (東京大学大学院・総合文化研究科)
Tetrahedron and 3D reflection equation from PBW bases of the nilpotent subalgebra of quantum superalgebras (in Japanese)
Zoomを用いてオンラインで行います.参加希望の方はウィロックスまでZoomのリンクをお尋ねください.
米山 瑛仁 氏 (東京大学大学院・総合文化研究科)
Tetrahedron and 3D reflection equation from PBW bases of the nilpotent subalgebra of quantum superalgebras (in Japanese)
[ 講演概要 ]
We study transition matrices of PBW bases of the nilpotent subalgebra of quantum superalgebras associated with all possible Dynkin diagrams of type A and B in the case of rank 2 and 3, and examine relationships with three-dimensional (3D) integrability. We obtain new solutions to the Zamolodchikov tetrahedron equation via type A and the 3D reflection equation via type B, where the latter equation was proposed by Isaev and Kulish as a 3D analog of the reflection equation of Cherednik. As a by-product of our approach, the Bazhanov-Sergeev solution to the Zamolodchikov tetrahedron equation is characterized as the transition matrix for a particular case of type A, which clarifies an algebraic origin of it. Our work is inspired by the recent developments connecting transition matrices for quantum non-super algebras with intertwiners of irreducible representations of quantum coordinate rings. We also discuss the crystal limit of transition matrices, which gives a super analog of transition maps of Lusztig's parametrizations of the canonical basis.
https://arxiv.org/abs/2012.13385
We study transition matrices of PBW bases of the nilpotent subalgebra of quantum superalgebras associated with all possible Dynkin diagrams of type A and B in the case of rank 2 and 3, and examine relationships with three-dimensional (3D) integrability. We obtain new solutions to the Zamolodchikov tetrahedron equation via type A and the 3D reflection equation via type B, where the latter equation was proposed by Isaev and Kulish as a 3D analog of the reflection equation of Cherednik. As a by-product of our approach, the Bazhanov-Sergeev solution to the Zamolodchikov tetrahedron equation is characterized as the transition matrix for a particular case of type A, which clarifies an algebraic origin of it. Our work is inspired by the recent developments connecting transition matrices for quantum non-super algebras with intertwiners of irreducible representations of quantum coordinate rings. We also discuss the crystal limit of transition matrices, which gives a super analog of transition maps of Lusztig's parametrizations of the canonical basis.
https://arxiv.org/abs/2012.13385