統計数学セミナー
過去の記録 ~05/02|次回の予定|今後の予定 05/03~
担当者 | 吉田朋広、増田弘毅、荻原哲平、小池祐太 |
---|---|
目的 | 確率統計学およびその関連領域に関する研究発表, 研究紹介を行う. |
2020年10月19日(月)
10:30-11:30 数理科学研究科棟(駒場) Zoom号室
下記URLより事前参加登録をお願いします.
小池祐太 氏 (東京大学大学院数理科学研究科)
高頻度データ解析に端を発する高次元中心極限定理の展開について (日本語)
https://docs.google.com/forms/d/e/1FAIpQLSfDhlzlC6haR8dsDn9_mCxi1s9RtXZxTi_U7Nb_Xl6q7Gw1dA/viewform
下記URLより事前参加登録をお願いします.
小池祐太 氏 (東京大学大学院数理科学研究科)
高頻度データ解析に端を発する高次元中心極限定理の展開について (日本語)
[ 講演概要 ]
本発表では、金融高頻度データ解析におけるリード・ラグ関係の有意性検定の問題に端を発して講演者が取り組んだ、高次元中心極限定理に関する最近の研究の進展について報告する。まず、元々の研究の背景であるリード・ラグ関係の有意性検定の問題について説明し、その問題を解くために講演者が証明した、多重Wiener-伊藤積分およびhomogeneous sumに対する高次元中心極限定理を述べる。次に、後者の結果の証明におけるアイディアを発展させることによって得られた、独立な確率ベクトルの和に対する高次元中心極限定理の精緻化に関する結果を紹介する。
[ 参考URL ]本発表では、金融高頻度データ解析におけるリード・ラグ関係の有意性検定の問題に端を発して講演者が取り組んだ、高次元中心極限定理に関する最近の研究の進展について報告する。まず、元々の研究の背景であるリード・ラグ関係の有意性検定の問題について説明し、その問題を解くために講演者が証明した、多重Wiener-伊藤積分およびhomogeneous sumに対する高次元中心極限定理を述べる。次に、後者の結果の証明におけるアイディアを発展させることによって得られた、独立な確率ベクトルの和に対する高次元中心極限定理の精緻化に関する結果を紹介する。
https://docs.google.com/forms/d/e/1FAIpQLSfDhlzlC6haR8dsDn9_mCxi1s9RtXZxTi_U7Nb_Xl6q7Gw1dA/viewform