PDE実解析研究会
過去の記録 ~09/18|次回の予定|今後の予定 09/19~
開催情報 | 火曜日 10:30~11:30 数理科学研究科棟(駒場) 056号室 |
---|---|
担当者 | 儀我美一、石毛和弘、三竹大寿、米田剛 |
セミナーURL | http://coe.math.sci.hokudai.ac.jp/sympo/pde_ra/ |
目的 | 首都圏の偏微分方程式、実解析の研究をさらに活発にするために本研究会を東大で開催いたします。 偏微分方程式研究者と実解析研究者の討論がより日常的になることを目指しています。 そのため、講演がその分野の概観をもわかるような形になるよう配慮いたします。 また講演者との1対1の討論がしやすいように講演は火曜の午前とし、午後に討論用の場所を用意いたします。 この研究会を通して皆様に気楽に東大を訪問していただければ幸いです。 北海道大学のHPには、第1回(2004年9月29日)~第38回(2008年10月15日)の情報が掲載されております。 |
2018年12月18日(火)
10:30-11:30 数理科学研究科棟(駒場) 056号室
In-Jee Jeong 氏 (Korea Institute for Advanced Study (KIAS))
Dynamics of singular vortex patches (English)
In-Jee Jeong 氏 (Korea Institute for Advanced Study (KIAS))
Dynamics of singular vortex patches (English)
[ 講演概要 ]
Vortex patches are solutions to the 2D Euler equations that are given by the characteristic function of a bounded domain that moves with time. It is well-known that if initially the boundary of the domain is smooth, the boundary remains smooth for all time. On the other hand, we consider patches with corner singularities. It turns out that, depending on whether the initial patch satisfies an appropriate rotational symmetry condition or not, the corner structure may propagate for all time or lost immediately. In the rotationally symmetric case, we are able to construct patches with interesting dynamical behavior as time goes to infinity. When the symmetry is absent, we present a simple yet formal evolution equation which describes the dynamics of the boundary. It suggests that the angle cusps instantaneously for $t > 0$.
This is joint work with Tarek Elgindi.
Vortex patches are solutions to the 2D Euler equations that are given by the characteristic function of a bounded domain that moves with time. It is well-known that if initially the boundary of the domain is smooth, the boundary remains smooth for all time. On the other hand, we consider patches with corner singularities. It turns out that, depending on whether the initial patch satisfies an appropriate rotational symmetry condition or not, the corner structure may propagate for all time or lost immediately. In the rotationally symmetric case, we are able to construct patches with interesting dynamical behavior as time goes to infinity. When the symmetry is absent, we present a simple yet formal evolution equation which describes the dynamics of the boundary. It suggests that the angle cusps instantaneously for $t > 0$.
This is joint work with Tarek Elgindi.