統計数学セミナー
過去の記録 ~10/15|次回の予定|今後の予定 10/16~
担当者 | 吉田朋広、増田弘毅、荻原哲平、小池祐太 |
---|---|
セミナーURL | http://www.sigmath.es.osaka-u.ac.jp/~kamatani/statseminar/ |
目的 | 確率統計学およびその関連領域に関する研究発表, 研究紹介を行う. |
2018年05月23日(水)
14:00-15:10 数理科学研究科棟(駒場) 052号室
Lorenzo Mercuri 氏 (University of Milan)
"yuima.law": From mathematical representation of general Lévy processes to a numerical implementation
Lorenzo Mercuri 氏 (University of Milan)
"yuima.law": From mathematical representation of general Lévy processes to a numerical implementation
[ 講演概要 ]
We present a new class called yuima.law that refers to the mathematical description of a general Lévy process used in the formal definition of a general Stochastic Differential Equation. The final aim is to have an object, defined by the user, that contains all possible information about the Lévy process considered. This class creates a link between YUIMA and other R packages available on CRAN that manage specific Lévy processes.
An example of yuima.law is shown based the Mixed Tempered Stable(MixedTS) Lévy processes. A review of the univariate MixedTS is given and some new results on the asymptotic tail behaviour are derived. The multivariate version of the Mixed Tempered Stable, which is a generalisation of the Normal Variance Mean Mixtures, is discussed. Characteristics of this distribution, its capacity in fitting tails and in capturing dependence structure between components are investigated.
We present a new class called yuima.law that refers to the mathematical description of a general Lévy process used in the formal definition of a general Stochastic Differential Equation. The final aim is to have an object, defined by the user, that contains all possible information about the Lévy process considered. This class creates a link between YUIMA and other R packages available on CRAN that manage specific Lévy processes.
An example of yuima.law is shown based the Mixed Tempered Stable(MixedTS) Lévy processes. A review of the univariate MixedTS is given and some new results on the asymptotic tail behaviour are derived. The multivariate version of the Mixed Tempered Stable, which is a generalisation of the Normal Variance Mean Mixtures, is discussed. Characteristics of this distribution, its capacity in fitting tails and in capturing dependence structure between components are investigated.