統計数学セミナー
過去の記録 ~09/12|次回の予定|今後の予定 09/13~
担当者 | 吉田朋広、増田弘毅、荻原哲平、小池祐太 |
---|---|
セミナーURL | http://www.sigmath.es.osaka-u.ac.jp/~kamatani/statseminar/ |
目的 | 確率統計学およびその関連領域に関する研究発表, 研究紹介を行う. |
2018年02月02日(金)
13:30-14:40 数理科学研究科棟(駒場) 052号室
Ioane Muni Toke 氏 (Centrale Supelec Paris)
Estimation of ratios of intensities in a Cox-type model of limit order books
Ioane Muni Toke 氏 (Centrale Supelec Paris)
Estimation of ratios of intensities in a Cox-type model of limit order books
[ 講演概要 ]
We introduce a Cox-type model for relative intensities of orders flows in a limit order book. The Cox-like intensities of the counting processes of events are assumed to share an unobserved and unspecified baseline intensity, which in finance can be identified to a global market activity affecting all events. The model is formulated in terms of relative responses of the intensities to covariates, and relative parameters can be estimated by quasi likelihood maximization. Consistency and asymptotic normality of the estimators are proven. Computationally intensive inferences are run on large samples of tick-by-tick data (35+ stocks and 220+ trading days, adding to more than one billion events). Penalization methods are also investigated. Results of the model are interpreted in terms of probability of occurrence of events. Excellent agreement with empirical data is found. Estimated model reproduces known empirical facts on imbalance, spread and queue sizes, and helps identifying trading signals of interests on a given stock.
Joint work with N.Yoshida.
We introduce a Cox-type model for relative intensities of orders flows in a limit order book. The Cox-like intensities of the counting processes of events are assumed to share an unobserved and unspecified baseline intensity, which in finance can be identified to a global market activity affecting all events. The model is formulated in terms of relative responses of the intensities to covariates, and relative parameters can be estimated by quasi likelihood maximization. Consistency and asymptotic normality of the estimators are proven. Computationally intensive inferences are run on large samples of tick-by-tick data (35+ stocks and 220+ trading days, adding to more than one billion events). Penalization methods are also investigated. Results of the model are interpreted in terms of probability of occurrence of events. Excellent agreement with empirical data is found. Estimated model reproduces known empirical facts on imbalance, spread and queue sizes, and helps identifying trading signals of interests on a given stock.
Joint work with N.Yoshida.