PDE実解析研究会
過去の記録 ~10/14|次回の予定|今後の予定 10/15~
開催情報 | 火曜日 10:30~11:30 数理科学研究科棟(駒場) 056号室 |
---|---|
担当者 | 儀我美一、石毛和弘、三竹大寿、米田剛 |
セミナーURL | http://coe.math.sci.hokudai.ac.jp/sympo/pde_ra/ |
目的 | 首都圏の偏微分方程式、実解析の研究をさらに活発にするために本研究会を東大で開催いたします。 偏微分方程式研究者と実解析研究者の討論がより日常的になることを目指しています。 そのため、講演がその分野の概観をもわかるような形になるよう配慮いたします。 また講演者との1対1の討論がしやすいように講演は火曜の午前とし、午後に討論用の場所を用意いたします。 この研究会を通して皆様に気楽に東大を訪問していただければ幸いです。 北海道大学のHPには、第1回(2004年9月29日)~第38回(2008年10月15日)の情報が掲載されております。 |
2016年01月26日(火)
10:30-11:30 数理科学研究科棟(駒場) 056号室
Salomé Oudet 氏 (University of Tokyo)
Hamilton-Jacobi equations for optimal control on 2-dimensional junction (English)
Salomé Oudet 氏 (University of Tokyo)
Hamilton-Jacobi equations for optimal control on 2-dimensional junction (English)
[ 講演概要 ]
We are interested in infinite horizon optimal control problems on 2-dimensional junctions (namely a union of half-planes sharing a common straight line) where different dynamics and different running costs are allowed in each half-plane. As for more classical optimal control problems, ones wishes to determine the Hamilton-Jacobi equation which characterizes the value function. However, the geometric singularities of the 2-dimensional junction and discontinuities of data do not allow us to apply the classical results of the theory of the viscosity solutions.
We will explain how to skirt these difficulties using arguments coming both from the viscosity theory and from optimal control theory. By this way we prove that the expected equation to characterize the value function is well posed. In particular we prove a comparison principle for this equation.
We are interested in infinite horizon optimal control problems on 2-dimensional junctions (namely a union of half-planes sharing a common straight line) where different dynamics and different running costs are allowed in each half-plane. As for more classical optimal control problems, ones wishes to determine the Hamilton-Jacobi equation which characterizes the value function. However, the geometric singularities of the 2-dimensional junction and discontinuities of data do not allow us to apply the classical results of the theory of the viscosity solutions.
We will explain how to skirt these difficulties using arguments coming both from the viscosity theory and from optimal control theory. By this way we prove that the expected equation to characterize the value function is well posed. In particular we prove a comparison principle for this equation.