幾何コロキウム

過去の記録 ~02/06次回の予定今後の予定 02/07~

開催情報 金曜日 10:00~11:30 数理科学研究科棟(駒場) 126号室
担当者 植田一石,金井雅彦,二木昭人
備考 開始時間と開催場所などは変更されることがあるので, セミナーごとにご確認ください.

2015年06月12日(金)

10:00-11:30   数理科学研究科棟(駒場) 126号室
服部広大 氏 (慶應大学)
The nonuniqueness of tangent cone at infinity of Ricci-flat manifolds (Japanese)
[ 講演概要 ]
For a complete Riemannian manifold (M,g), the Gromov-Hausdorff limit of (M, r^2g) as r to 0 is called the tangent cone at infinity. By the Gromov's Compactness Theorem, there exists tangent cone at infinity for every complete Riemannian manifolds with nonnegative Ricci curvatures. Moreover, if it is Ricci-flat, with Euclidean volume growth and having at least one tangent cone at infinity with a smooth cross section, then it is uniquely determined by the result of Colding and Minicozzi. In this talk I will explain that the assumption of the volume growth is essential for their uniqueness theorem.