統計数学セミナー
過去の記録 ~11/01|次回の予定|今後の予定 11/02~
担当者 | 吉田朋広、増田弘毅、荻原哲平、小池祐太 |
---|---|
セミナーURL | http://www.sigmath.es.osaka-u.ac.jp/~kamatani/statseminar/ |
目的 | 確率統計学およびその関連領域に関する研究発表, 研究紹介を行う. |
2014年11月04日(火)
16:30-17:40 数理科学研究科棟(駒場) 052号室
栁原 宏和 氏 (広島大学理学系研究科)
Conditions for consistency of a log-likelihood-based information criterion in normal multivariate linear regression models under the violation of normality assumption
栁原 宏和 氏 (広島大学理学系研究科)
Conditions for consistency of a log-likelihood-based information criterion in normal multivariate linear regression models under the violation of normality assumption
[ 講演概要 ]
本発表では,正規性を仮定した多変量線形回帰モデルにおいて,最大対数尤度の-2倍に罰則項を加えることで定義されるLog-Likelihood-Based Information Criterion (LLBIC) を用いた変数選択法が一致性を持つための条件について考察する.Yanagihara et al. (2012) では,LLBICを用いた変数選択法が一致性を持つために必要な条件を,真のモデルの分布が正規分布であるという仮定の下で,標本数と観測値の次元を共に大きくする高次元漸近理論により導出した.しかしながら,多変量分布において正規性を満たすことは稀であり,仮定した分布と真の分布のずれの影響を調べることは非常に重要である.本発表の目的は,候補のモデルに正規性は仮定したが真のモデルの分布が正規分布ではないという条件の下で,高次元漸近理論に基づき評価された一致性を満たすための条件がどう変化するかを調べることにある.実際には,Yanagihara et al. (2012) で得られた条件よりも若干条件が狭くなるが, ほぼ同じ条件となり,その条件は真のモデルの非正規性に依存しないことがわかった.
本発表では,正規性を仮定した多変量線形回帰モデルにおいて,最大対数尤度の-2倍に罰則項を加えることで定義されるLog-Likelihood-Based Information Criterion (LLBIC) を用いた変数選択法が一致性を持つための条件について考察する.Yanagihara et al. (2012) では,LLBICを用いた変数選択法が一致性を持つために必要な条件を,真のモデルの分布が正規分布であるという仮定の下で,標本数と観測値の次元を共に大きくする高次元漸近理論により導出した.しかしながら,多変量分布において正規性を満たすことは稀であり,仮定した分布と真の分布のずれの影響を調べることは非常に重要である.本発表の目的は,候補のモデルに正規性は仮定したが真のモデルの分布が正規分布ではないという条件の下で,高次元漸近理論に基づき評価された一致性を満たすための条件がどう変化するかを調べることにある.実際には,Yanagihara et al. (2012) で得られた条件よりも若干条件が狭くなるが, ほぼ同じ条件となり,その条件は真のモデルの非正規性に依存しないことがわかった.