過去の記録 ~12/08次回の予定今後の予定 12/09~


14:30-15:20   数理科学研究科棟(駒場) 002号室
このセミナーは 研究集会「異常拡散の数理とシミュレーション手法ならびに関連する課題」(主催・共催:数物フロンティア・リーディング大学院プログラム、卓越した大学院拠点形成支援補
Y. Luchko 氏 (Beuth Technical University of Applied Sciences)
Neutral-fractional diffusion-wave equation and some properties of its fundamental solution (ENGLISH)
[ 講演概要 ]
Recently, the so called neutral-fractional diffusion-wave equation was introduced and analysed in the case of one spatial variable. In contrast to the fractional diffusion of diffusion-wave equations, the neutral-fractional diffusion-wave equation contains fractional derivatives of the same order both in space and in time. The fundamental solution of the neutral-fractional diffusion-wave equation was shown to exhibit properties of both the solutions of the diffusion equation and those of the wave equation.
In the one-dimensional case, the fundamental solution of the neutral-fractional diffusion-wave equation can be interpreted as a spatial probability density function evolving in time. At the same time, it can be treated as a damped wave whose amplitude maximum and the gravity and mass centres propagate with the constant velocities that depend just on the equation order.
In this talk, the problems mentioned above are considered for the multi- dimensional neutral-fractional diffusion-wave equation. To illustrate analytical findings, some results of numerical calculations and plots are presented.