統計数学セミナー
過去の記録 ~05/02|次回の予定|今後の予定 05/03~
担当者 | 吉田朋広、増田弘毅、荻原哲平、小池祐太 |
---|---|
目的 | 確率統計学およびその関連領域に関する研究発表, 研究紹介を行う. |
2013年07月04日(木)
14:50-16:00 数理科学研究科棟(駒場) 052号室
鈴木 大慈 氏 (東京工業大学)
低ランク行列推定におけるベイズ推定法の性質 (JAPANESE)
http://www.sigmath.es.osaka-u.ac.jp/~kamatani/statseminar/2013/02.html
鈴木 大慈 氏 (東京工業大学)
低ランク行列推定におけるベイズ推定法の性質 (JAPANESE)
[ 講演概要 ]
真のパラメータが低ランク行列の構造を持つような低ランク行列推定問題を考える. 低ランク行列推定問題の例としては,低ランク行列の一部が見えている時にその残りを 推定する行列補完の問題などがある.応用としてはユーザへの推薦システムなどがある. これまでの理論解析は主にスパース正則化を用いた経験誤差最小化を対象としてきたが, 本発表ではベイズ法を考え,その統計的性質を調べる.ベイズ法においては, 正則化付き経験誤差最小化による方法とは異なるやや緩い仮定のもと, ほぼ最適な収束レートが導けることを示す.また,テンソル型データ (多次元アレイデータ)へも同様の議論が拡張可能であることも述べる.
[ 参考URL ]真のパラメータが低ランク行列の構造を持つような低ランク行列推定問題を考える. 低ランク行列推定問題の例としては,低ランク行列の一部が見えている時にその残りを 推定する行列補完の問題などがある.応用としてはユーザへの推薦システムなどがある. これまでの理論解析は主にスパース正則化を用いた経験誤差最小化を対象としてきたが, 本発表ではベイズ法を考え,その統計的性質を調べる.ベイズ法においては, 正則化付き経験誤差最小化による方法とは異なるやや緩い仮定のもと, ほぼ最適な収束レートが導けることを示す.また,テンソル型データ (多次元アレイデータ)へも同様の議論が拡張可能であることも述べる.
http://www.sigmath.es.osaka-u.ac.jp/~kamatani/statseminar/2013/02.html