講演会

過去の記録 ~02/25次回の予定今後の予定 02/26~


2012年11月19日(月)

16:45-17:45   数理科学研究科棟(駒場) 126号室
Hendrik Weber 氏 (University of Warwick)
Invariant measure of the stochastic Allen-Cahn equation: the regime of small noise and large system size (ENGLISH)
[ 講演概要 ]
We study the invariant measure of the one-dimensional stochastic Allen-Cahn equation for a small noise strength and a large but finite system. We endow the system with inhomogeneous Dirichlet boundary conditions that enforce at least one transition from -1 to 1. We are interested in the competition between the ``energy'' that should be minimized due to the small noise strength and the ``entropy'' that is induced by the large system size.
Our methods handle system sizes that are exponential with respect to the inverse noise strength, up to the ``critical'' exponential size predicted by the heuristics. We capture the competition between energy and entropy through upper and lower bounds on the probability of extra transitions between $\\pm 1$. These bounds are sharp on the exponential scale and imply in particular that the probability of having one and only one transition from -1 to +1 is exponentially close to one. In addition, we show that the position of the transition layer is uniformly distributed over the system on scales larger than the logarithm of the inverse noise strength.
Our arguments rely on local large deviation bounds, the strong Markov property, the symmetry of the potential, and measure-preserving reflections.
This is a joint work with Felix Otto and Maria Westdickenberg.