GCOEセミナー
過去の記録 ~05/23|次回の予定|今後の予定 05/24~
2012年02月22日(水)
16:15-17:15 数理科学研究科棟(駒場) 270号室
Oleg Emanouilov 氏 (Colorado State University)
Determination of first order coefficient in semilinear elliptic equation by partial Cauchy data. (ENGLISH)
Oleg Emanouilov 氏 (Colorado State University)
Determination of first order coefficient in semilinear elliptic equation by partial Cauchy data. (ENGLISH)
[ 講演概要 ]
In a bounded domain in R2, we consider a semilinear elliptic equation ¥Delta u +qu +f(u)=0.
Under some conditions on f, we show that the coefficient q can be uniquely determined by the following partial data
{¥mathcal C}_q=¥{(u,¥frac{¥partial u}{¥partial¥nu})¥vert_{\\\\tilde Gamma}¥vert - ¥Delta u +qu +f(u)=0, ¥,¥,¥, u¥vert_{¥Gamma_0}=0,¥,¥, u¥in H^1(¥Omega)¥}
where ¥tilde ¥Gamma is an arbitrary fixed open set of
¥partial¥Omega and ¥Gamma_0=¥partial¥Omega¥setminus¥tilde¥Gamma.
In a bounded domain in R2, we consider a semilinear elliptic equation ¥Delta u +qu +f(u)=0.
Under some conditions on f, we show that the coefficient q can be uniquely determined by the following partial data
{¥mathcal C}_q=¥{(u,¥frac{¥partial u}{¥partial¥nu})¥vert_{\\\\tilde Gamma}¥vert - ¥Delta u +qu +f(u)=0, ¥,¥,¥, u¥vert_{¥Gamma_0}=0,¥,¥, u¥in H^1(¥Omega)¥}
where ¥tilde ¥Gamma is an arbitrary fixed open set of
¥partial¥Omega and ¥Gamma_0=¥partial¥Omega¥setminus¥tilde¥Gamma.