Kavli IPMU Komaba Seminar

過去の記録 ~12/10次回の予定今後の予定 12/11~

開催情報 月曜日 16:30~18:00 数理科学研究科棟(駒場) 002号室
担当者 河野 俊丈


16:30-18:00   数理科学研究科棟(駒場) 002号室
Siu-Cheong Lau 氏 (IPMU)
Enuemerative meaning of mirror maps for toric Calabi-Yau manifolds (ENGLISH)
[ 講演概要 ]
For a mirror pair of smooth manifolds X and Y, mirror symmetry associates a complex structure on Y to each Kaehler structure on X, and this association is called the mirror map. Traditionally mirror maps are defined by solving Picard-Fuchs equations and its geometric meaning was unclear. In this talk I explain a recent joint work with K.W. Chan, N.C. Leung and H.H. Tseng which proves that mirror maps can be obtained by taking torus duality (the SYZ approach) and disk-counting for a class of toric Calabi-Yau manifolds in any dimensions. As a consequence we can compute disk-counting invariants by solving Picard-Fuchs equations.