PDE実解析研究会

過去の記録 ~09/19次回の予定今後の予定 09/20~

開催情報 火曜日 10:30~11:30 数理科学研究科棟(駒場) 056号室
担当者 儀我美一、石毛和弘、三竹大寿、米田剛
セミナーURL http://coe.math.sci.hokudai.ac.jp/sympo/pde_ra/
目的 首都圏の偏微分方程式、実解析の研究をさらに活発にするために本研究会を東大で開催いたします。
偏微分方程式研究者と実解析研究者の討論がより日常的になることを目指しています。
そのため、講演がその分野の概観をもわかるような形になるよう配慮いたします。
また講演者との1対1の討論がしやすいように講演は火曜の午前とし、午後に討論用の場所を用意いたします。
この研究会を通して皆様に気楽に東大を訪問していただければ幸いです。
北海道大学のHPには、第1回(2004年9月29日)~第38回(2008年10月15日)の情報が掲載されております。

2011年10月31日(月)

13:30-14:30   数理科学研究科棟(駒場) 056号室
北海道大学のHPには、第1回(2004年9月29日)~第38回(2008年10月15日)までの情報が掲載されております。
Horst Heck
(Technische Universität Darmstadt)
Stationary Weak Solutions of the Navier-Stokes Equations Past an Obstacle (ENGLISH)
[ 講演概要 ]
Consider the stationary Navier-Stokes equations in an exterior smooth domain $\\Omega$. If the flow condition $u_\\infty$ for $u$ at infinity is non-zero and the external force $f\\in \\dot H^{-1}_2(\\Omega)$ is given Leray constructed a weak solution $u\\in \\dot H^1_2(\\Omega)$, the homogeneous Sobolev space, with $u-u_\\infty\\in L^6(\\Omega)$.
We show that if in addition $f\\in \\dot H^{-1}_q(\\Omega)$ for some $q\\in (4/3,4)$ then the weak solution has the property $u-u_\\infty\\in L^{4q/(4-q)}(\\Omega)$.
This additional integrability implies that $u$ satisfies the energy identity. Further consequences are uniqueness results for small $u_\\infty$ and $f$ and continuous dependence of the solution with respect to $u_\\infty$.
The presented results are joint work with Hyunseok Kim and Hideo Kozono.