PDE実解析研究会

過去の記録 ~02/06次回の予定今後の予定 02/07~

開催情報 火曜日 10:30~11:30 数理科学研究科棟(駒場) 056号室
担当者 儀我美一、石毛和弘、三竹大寿、米田剛
セミナーURL http://coe.math.sci.hokudai.ac.jp/sympo/pde_ra/
目的 首都圏の偏微分方程式、実解析の研究をさらに活発にするために本研究会を東大で開催いたします。
偏微分方程式研究者と実解析研究者の討論がより日常的になることを目指しています。
そのため、講演がその分野の概観をもわかるような形になるよう配慮いたします。
また講演者との1対1の討論がしやすいように講演は火曜の午前とし、午後に討論用の場所を用意いたします。
この研究会を通して皆様に気楽に東大を訪問していただければ幸いです。
北海道大学のHPには、第1回(2004年9月29日)~第38回(2008年10月15日)の情報が掲載されております。

2011年04月20日(水)

10:30-11:30   数理科学研究科棟(駒場) 056号室
北海道大学のHPには、第1回(2004年9月29日)~第38回(2008年10月15日)までの情報が掲載されております。
吉田伸生 氏 (京都大学大学院理学研究科/理学部数学教室)
Stochastic power law fluids (JAPANESE)
[ 講演概要 ]
This talk is based in part on a joint work with Yutaka Terasawa.
We consider a SPDE (stochastic partial differential equation) which describes the velocity field of a viscous, incompressible non-Newtonian fluid subject to a random force.
Here, the extra stress tensor of the fluid is given by a polynomial of degree $p-1$ of the rate of strain tensor, while the colored noise is considered as a random force.
We first investigate the existence and the uniqueness of weak solutions to this SPDE.
We next turn to the special case: $p \\in [1 + {d \\over 2},{2d\\overd-2})$,
where $d$ is the dimension of the space. We prove there that the Galerkin scheme approximates the velocity field in a strong sense. As a consequence, we establish the energy equality for the velocity field.
[ 参考URL ]
http://www.math.kyoto-u.ac.jp/~nobuo/