GCOEセミナー
過去の記録 ~10/10|次回の予定|今後の予定 10/11~
2010年06月23日(水)
16:30-18:00 数理科学研究科棟(駒場) 002号室
数値解析セミナー#005
村川 秀樹 氏 (富山大学大学院理工学研究部(理学))
非線形交差拡散系の数値解法―反応拡散系近似理論の応用― (JAPANESE)
http://www.infsup.jp/utnas/
数値解析セミナー#005
村川 秀樹 氏 (富山大学大学院理工学研究部(理学))
非線形交差拡散系の数値解法―反応拡散系近似理論の応用― (JAPANESE)
[ 講演概要 ]
多成分反応拡散系において、他の成分同士、拡散が相互に依存しあっているときに、拡散が交差していると言い、そのような系は交差拡散系と呼ばれる。2種生物種の競合問題におけるお互いの動的な干渉作用を記述する重定-川崎-寺本モデルは非線形交差拡散を含む問題の代表例である。非線形交差拡散系に対する効果的な数値解法は個別の問題に対して構成され、解析されるのが現状である。現象のモデリングを行う場合など、パラメータの変更のみでなく、非線形項そのものを変えて多くの数値実験を行いたい場合がある。この様な状況に対応するために、汎用的で簡便な数値解法が望まれる。講演では、非線形交差拡散系を近似するある半線形反応拡散系を媒介することにより、そのような数値解法を導出、解析し、数値計算を通してその有用性を示す。時間が許せば、半線形反応拡散系を用いた退化放物型方程式の数値解法についても触れたい。
[ 参考URL ]多成分反応拡散系において、他の成分同士、拡散が相互に依存しあっているときに、拡散が交差していると言い、そのような系は交差拡散系と呼ばれる。2種生物種の競合問題におけるお互いの動的な干渉作用を記述する重定-川崎-寺本モデルは非線形交差拡散を含む問題の代表例である。非線形交差拡散系に対する効果的な数値解法は個別の問題に対して構成され、解析されるのが現状である。現象のモデリングを行う場合など、パラメータの変更のみでなく、非線形項そのものを変えて多くの数値実験を行いたい場合がある。この様な状況に対応するために、汎用的で簡便な数値解法が望まれる。講演では、非線形交差拡散系を近似するある半線形反応拡散系を媒介することにより、そのような数値解法を導出、解析し、数値計算を通してその有用性を示す。時間が許せば、半線形反応拡散系を用いた退化放物型方程式の数値解法についても触れたい。
http://www.infsup.jp/utnas/