PDE実解析研究会
過去の記録 ~09/18|次回の予定|今後の予定 09/19~
開催情報 | 火曜日 10:30~11:30 数理科学研究科棟(駒場) 056号室 |
---|---|
担当者 | 儀我美一、石毛和弘、三竹大寿、米田剛 |
セミナーURL | http://coe.math.sci.hokudai.ac.jp/sympo/pde_ra/ |
目的 | 首都圏の偏微分方程式、実解析の研究をさらに活発にするために本研究会を東大で開催いたします。 偏微分方程式研究者と実解析研究者の討論がより日常的になることを目指しています。 そのため、講演がその分野の概観をもわかるような形になるよう配慮いたします。 また講演者との1対1の討論がしやすいように講演は火曜の午前とし、午後に討論用の場所を用意いたします。 この研究会を通して皆様に気楽に東大を訪問していただければ幸いです。 北海道大学のHPには、第1回(2004年9月29日)~第38回(2008年10月15日)の情報が掲載されております。 |
2010年05月12日(水)
10:30-11:30 数理科学研究科棟(駒場) 056号室
北海道大学のHPには、第1回(2004年9月29日)~第38回(2008年10月15日)までの情報が掲載されております。
Jean-Pierre Puel 氏 (Graduate School of Mathematical Sciences
The University of Tokyo)
Exact controllability for incompressible fluids (ENGLISH)
北海道大学のHPには、第1回(2004年9月29日)~第38回(2008年10月15日)までの情報が掲載されております。
Jean-Pierre Puel 氏 (Graduate School of Mathematical Sciences
The University of Tokyo)
Exact controllability for incompressible fluids (ENGLISH)
[ 講演概要 ]
After a short presentation of J.-M. Coron's results for Euler equation, we will give the good notions of controllability for Navier-Stokes equations, namely the exact controllability to trajectories.
We will outline the strategy for obtaining local results, based on a fixed point argument following the study of null controllability for the linearized problem. This is equivalent to an observability inequality for the adjoint system, which requires a global Carleman estimate for linearized Navier-Stokes equations. We will explain this estimate and the different steps for obtaining it along the lines of the articles by E.Fernadez-Cara, S.Guerrero, O.Imanuvilov and J.-P.Puel (JMPA, 2004) and M.Gonzalez-Burgos, S.Guerrero and J.-P.Puel (CPAA, 2009).
We will end up with some important open problems.
After a short presentation of J.-M. Coron's results for Euler equation, we will give the good notions of controllability for Navier-Stokes equations, namely the exact controllability to trajectories.
We will outline the strategy for obtaining local results, based on a fixed point argument following the study of null controllability for the linearized problem. This is equivalent to an observability inequality for the adjoint system, which requires a global Carleman estimate for linearized Navier-Stokes equations. We will explain this estimate and the different steps for obtaining it along the lines of the articles by E.Fernadez-Cara, S.Guerrero, O.Imanuvilov and J.-P.Puel (JMPA, 2004) and M.Gonzalez-Burgos, S.Guerrero and J.-P.Puel (CPAA, 2009).
We will end up with some important open problems.